Reverses of Ando's inequality for positive linear maps
نویسندگان
چکیده
منابع مشابه
An Inequality for Linear Positive Functionals
Using P0-simple functionals, we generalise the result from Theorem 1.1 obtained by Professor F. Qi (F. QI, An algebraic inequality, RGMIA Res. Rep. Coll., 2(1) (1999), article 8).
متن کاملEla a Diaz–metcalf Type Inequality for Positive Linear Maps and Its Applications∗
We present a Diaz–Metcalf type operator inequality as a reverse Cauchy–Schwarz inequality and then apply it to get some operator versions of Pólya–Szegö’s, Greub–Rheinboldt’s, Kantorovich’s, Shisha–Mond’s, Schweitzer’s, Cassels’ and Klamkin–McLenaghan’s inequalities via a unified approach. We also give some operator Grüss type inequalities and an operator Ozeki– Izumino–Mori–Seo type inequality...
متن کاملA Diaz-Metcalf type inequality for positive linear maps and its applications
We present a Diaz–Metcalf type operator inequality as a reverse Cauchy–Schwarz inequality and then apply it to get some operator versions of Pólya–Szegö’s, Greub–Rheinboldt’s, Kantorovich’s, Shisha–Mond’s, Schweitzer’s, Cassels’ and Klamkin–McLenaghan’s inequalities via a unified approach. We also give some operator Grüss type inequalities and an operator Ozeki– Izumino–Mori–Seo type inequality...
متن کاملAsymptotic Lifts of Positive Linear Maps
We show that the notion of asymptotic lift generalizes naturally to normal positive maps φ : M → M acting on von Neumann algebras M . We focus on cases in which the domain of the asymptotic lift can be embedded as an operator subsystem M∞ ⊆ M , and characterize when M∞ is a Jordan subalgebra of M in terms of the asymptotic multiplicative properties of φ.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2011
ISSN: 1331-4343
DOI: 10.7153/mia-14-75